Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

[Introduction to Linux Command-Line for Beginners j

This tutorial went through some changes since I've posted it on the TuxArena Blog over
one year ago, and I believe this version is more complete and well-organized. This
introductory tutorial addresses new and average Linux users rather than experts who
will already know quite everything is explained here. I am no expert, so if you want to
help me improve this tutorial or have some other suggestions or corrections please feel
free to contact me at craciun.dan@tuxarena.com or leave a comment on the TuxArena
website.

The tutorial aims first-time users and average Linux users and its goal is to make you
learn your way around when using the Linux command-line interface (or CLI for short).
It also encourages some habits which I believe that, although hard to learn at first, will
make you more productive later on.

I divided this guide in several sections, so feel free to jump to whichever you want using
the links below:

What Is Linux?

Basic Commands and Concepts
Moving Around

More Useful CLI Commands
The Power of the Shell
Creating and Editing Files

Linux Directory Structure
Environment Variables

Bash built-ins

Pipes and Redirecting Output
Getting Help

Helpful Links & Further Reading

What Is Linux?

To some, the first thing that comes in mind when asked this question is "Linux is an
operating system." That's not completely false, but neither accurately true. Linux per
se is only the kernel of the operating system, the central part of it. A Linux-based
operating system comprises of the Linux kernel, the GNU tools and utilities (like the
Bash shell, or the GCC compiler), desktop environments (like KDE and GNOME), and
finally, all the other applications, graphical or not (like a music player or an image
editor).

What you are installing on your computer is called a Linux distribution, or a
Linux-based operating system. A Linux distribution takes all the parts mentioned above
and assembles them, eventually polishing and customizing them. There are hundreds of
good Linux distributions out there, and I couldn't contain all of them here. Some
examples include the popular Ubuntu, Debian, openSUSE or Fedora. You can find more
information about Linux distributions at DistroWatch or on Wikipedia.

Usually Linux is cost-free, but some companies may charge for it or for support. The
kernel and all the GNU tools are licensed under a free, permissive license (the GPLv2 or
GPLv3), which allows not only to download freely and redistribute it, but also to study
and modify the source code.

Introduction: Basic Commands and Concepts
What is a shell?

A shell is a command interpreter which allows you to interact with the computer.
The way things work is pretty simple: you type in commands, the shell interprets them,
performs the tasks it was asked to do, and finally it sends the results to the standard
output, which is usually the screen. Here's an example output of the 1s command,
which lists the files in a directory:

(!
i debian$ 1s
i bin dev home media proc selinux tmp vmlinuz

i boot etc lib mnt root srv usr initrd.img

i cdrom floyd lost+found opt sbin sys var
N J

This is a list of files inside the root directory. The root directory is the first location in
the filesystem tree hierarchy, and it is represented by the slash character: /.

1of11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

Some of the most popular shells are:

e bash - the Bourne-Again Shell, the default shell on most Linux systems

e sh - the Bourne Shell, an older shell which is not so widely used anymore

e csh - the C Shell, which accepts a syntax which resembles the C programming
language

e tcsh - an improved version of the C Shell

e ksh - the Korn Shell, initially developed in the early 1980s

e dash - Debian Almquist Shell, a shell created by the Debian distribution

In this tutorial we will focus on Bash, since it is the most widely used and also one of
the most powerful shells out there. Bash is a modern implementation of the older
Bourne Shell (sh), developed by the GNU project, which provides a huge amount of
tools and which, together with the Linux kernel, desktop environments like GNOME or
KDE and applications which run on top of them, comprise the whole Linux platform. On
a Debian or Ubuntu distribution, the default shell used by the system is specified in the
file /etc/passwd (default being Bash).

Starting up a terminal

To access the shell we will use a shell-like application, also called a terminal emulator.
There is a huge number of good terminal applications out there, including the default
ones in GNOME or KDE, or Yakuake, Guake, rxvt and so on. For now let's just stick with
the default that comes with your system. If you're using GNOME you can access the
terminal by going to Applications->Accessories->Terminal or pressing Alt+F2 and
typing gnome-terminal in the run box that appears, followed by Enter. If you're
running KDE you can type instead konsole after pressing Alt+F2. Here's how your
terminal should look like:

Depending on your distribution, the prompt may look something like user@hosts$.
The first part before the ampersand is your login username, and the other one is the
hostname of your computer.

Moving Around
What are Linux commands?

Linux commands are executable binary files which can be ran to perform certain tasks,
like for example listing the files in a directory running an entire graphical application.
Examples of frequently used commands are 1s, cd, pwd, date or cat. With the
exception of executable files, there is also a category called shell built-ins, which are
built into the shell (Bash in our case). We'll deal with those later.

The general form of a Linux command is:

(\
i command options(s) filename(s)
N J

Which specifies a command, followed by one or more parameters, and optionally one or
more files to apply it on. For example:

’ A
i $ echo -e 'Hello, world!\n’
N J

Will output the text 'Hello, world!" followed by a newline character. The -e parameter
(also called argument, or switch in this case) tells the echo command to interpret
escaped characters, like the trailing \n, which will add a newline after the text inside
the single quotes. Ignore the leading dollar sign, it just signifies the shell prompt.

A command may or may not have arguments. An argument can be an option or a
filename.

Moving around using cd and pwd

Usually when you start a terminal the default starting location (called the current
working directory) is your home folder, /home/your_username/. Let's say we want
to move to the root directory. We will issue the following command:

(h!
fcd /
N J

As you can see, we used the cd (change directory) command, followed by a single
argument, the path where we want to go (the root directory is represented by the slash
sign). Now let's vizualize the contents of the root directory using the 1s command:

20f 11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

4 \
P35 1s
i bin dev home media proc selinux tmp vmlinuz

i boot etc lib mnt root srv usr initrd.img

i cdrom floyd lost+found opt sbin sys var
N J

These are all files and directories located in our root folder. If we would've wanted to
list the contents of this folder directly from where we were, in the home folder, we
would've called 1s with a single argument, the slash sign:

I B
i$ 1s /
i bin dev home media proc selinux tmp vmlinuz

i boot etc lib mnt root srv usr initrd.img

cdrom floyd lost+found opt sbin sys var
N\ J

And it would've had the same result.

Now let's go back inside our home directory and list its contents. To do this, we have
two options: cd without any parameters always changes the working directory to the
home of the current user (unless it is aliased). Alternately, you could type:

e h
$ cd /home/your username/
¢ J

And you should be back in your home folder. Don't forget to replace your_username.
If you don't know what your username is type echo $USER. On my computer this
would output 'embryo’, which is the user I'm currently logged in with:

I B}
i debian$ echo $USER
i embryo
N J

Now let's see what the current working directory is. We will use the pwd (print
working directory) command to do so:

r h
i $ pwd
i /home/embryo/
N J

Now let's see the contents of our home directory using the Is command. It should
output something like the following (yours may vary):

r !
i $ s
i Downloads Music my stuff textfile
N J

There is more to 1Is though. Let's say we want to also list hidden files and show detailed
information about each separate file. For this we will group several switches and pass
them to ls:

(N
$ ls -lha

total 20K

drwxr-xr-x 2 embryo embryo 4.0K 2010-12-19 15:12 Downloads

drwxr-xr-x 2 embryo embryo 4.0K 2010-12-19 15:12 Music

drwxr-xr-x 2 embryo embryo 4.0K 2010-12-19 15:21 my stuff

-rw-r--r-- 1 embryo embryo 0 2010-12-19 15:21 textfile

drwxr-xr-x 5 embryo embryo 4.0K 2010-12-19 15:32 .

drwxr-xr-x 62 embryo embryo 4.0K 2010-12-19 15:12 ..

-rw-r--r-- 1 embryo embryo 0 2010-12-19 15:32 .bashrc

N J

We grouped three different switches and passed them to Is: the 1 switch tells Is to use
the long listing format (with detailed information about each separate file), the h
switch tells Is to show file sizes in a human-readable format (kilobytes, megabytes or
gigabytes where is the case instead of bytes) and finally, the a switch tells Is to also
show the hidden files (the ones that start with a dot - in our case ., .. and .bashrc. You
will have more in your home directory.

Regarding the dot and double dot: these are also files, in that they are virtually
meaning the current directory and the parent directory, respectively. So, 1s .. will list
the contents of the parent directory, which in our case is /home/. 1s . will list the
contents of the current directory just like Is without arguments does. Bash uses
expansion to replace these with their actual meaning. So issuing Is .. is read by Bash
exactly like you would type Is /home/, since /home/ is the parent directory relative to
what the current working directory is.

3of11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

Absolute and relative paths

An absolute path is a complete path, and it always starts with the root directory
(slash sign). /home/embryo/, /, /usr/bin/, these are all absolute paths. They specify the
complete path up to a certain point.

On the other hand, a relative path will always take into consideration the current
working directory. So if you are, say, in the directory /home/ and you want to change
to, say, /home/embryo/Downloads you could do it like this:

{ N
i $ cd /home/embryo/Downloads
\ J

In this example we specified the full path to the Downloads directory, or the absolute
path. Notice the leading / sign for root. To do it using a relative path we would issue
this command:

’ !
i $ cd embryo/Downloads
~ J
Notice that we only specify the path from where we are, and there is no leading slash
sign.

Go back to your home folder (use cd) and let's see how the double dot works. As I
already mentioned, the double dot means the parent directory of the directory we're
currently in. So let's say we want to go to the root directory again, but this time using
double dot. Here's the command:

r !
icd ./
N J

Which tells cd to go up to the parent directory, and then go up in the tree hierarchy
one more time. You should be in the root directory now (check with pwd). The trailing
slash in the above command is not necessary.

Performing simple tasks

Now let's focus on performing simple tasks like creating directories, view date and
time, or simply playing around with some more basic commands.

Creating new files and directories

To create a new directory, we will use the mkdir (make directory) command. First,
make sure you are in your home directory with pwd. If not, type cd to get there. Now,
let's create a new directory:

r !
i debian$ mkdir myfolder
N J

We created a new directory called myfolder. If you list your files now, your new folder
should appear:

I B
i debian$ 1s
i Downloads Music myfolder my stuff textfile
N J

Now let's go inside our newly created folder, only this time using cd ~/myfolder/. The
tilda sign signifies your home directory, and it expands into /home/your _username/. So
issuing cd ~/myfolder/ is the same as issuing cd /home/embryo/myfolder/. Now let's
create another folder, called docs:

r N
i $ mkdir docs
\ J
Now let's create an empty file using the touch command:

r h
$ touch emptyfile
N J

The touch command creates an empty file with the name of its argument if that file
doesn't already exist, or it updates the last modification date and time if it exists. Now
since we created an empty folder and an empty file, let's see how we can delete them.

To remove files or folders, we will use the rm command. To remove our newly created
file type:

40f11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

r h
i $ rm emptyfile
N J
And to remove the docs directory:

r A}
i$ rm -r docs
N J

Notice that to remove a directory we need the -r switch.

Copying and moving files
Let's go back inside /home/your_username/myfolder/ and create a new directory and
a new file:

. h
i mkdir newdir
i touch newfile
N J

Now let's use the cp command to copy the file newfile inside the directory newdir:

r N
i'$ cp newfile newdir
N J
This is the same as if we would've typed the following:

r h
$ cp /home/embryo/myfolder/newfile /home/embryo/myfolder/newdir/
N J

But in our first example we used a relative path.

Now let's create another file inside myfolder, and then move it to newdir:

s B!
i touch file2
i mv file2 newdir
N J

We used the mv command to move it. Now let's create a new file inside myfolder, and
rename it. Notice that in Linux renaming is accomplished using the mv command, they
are one and the same thing. Let's create the a file called mynewfile and rename it to
file3 (we will list the contents of the directory after each step to see the changes):

{ N
i $ touch mynewfile
i % 1s

i mynewfile newdir newfile

i $ mv mynewfile file3

i debian$ 1s

i file3 newdir newfile
\ J

Now let's go inside the newdir directory, and use the double dot to move file2 from
there inside myfolder, and also rename it (we will list the contents after each step to
reflect the changes):

{ B
i¢ cd newdir/
F$ s

i newfile

i $ mv newfile ../renamed file

i$cd ..

P35 s

file3 newdir newfile renamed file
~ J

So first we entered in newdir. The file newfile was there since we moved it earlier.
Next, we moved it to the parent directory, but with a changed name, renamed_file.
Next, we changed the working directory to the parent of newdir and we listed its
contents. As a side note, if you copy or move a file and the new destination name is the
name of a directory, the file will be moved inside that directory.

Date and time
To view the current system's date and time, we will use the date command:

1 \
i debian$ date
i Sun Dec 19 16:06:53 EET 2010
\ J

Notice that date can be invoked in various ways in order to format the output. For

50f11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

example, to show only the time in an HH:MM:SS format (hour, minute, second) we

would use:

r h
i $ date +"%H:%M:%S" i
16:09:52
N J

The +"%H:%M:%S" parameter formats the output of the date command. Another
useful command is cal, which will show a calendar:

e N
debian$ cal
December 2010
Su Mo Tu We Th Fr Sa
1 2 3 4
5 6 7 8 910 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

. J

More basic commands
You can try the whoami command, which will show your username:

0 !
i $ whoami
i embryo
N J

The command uname is used to print system information. In combination with the -a
(all) switch, it will print various information including hostname, kernel version, date
and operating system:

r A
i $ uname -a
i Linux debian 2.6.26-2-686 #1 SMP Thu Nov 25 01:53:57 UTC 2010 i686 GNU/Linux ;
N J

The who command is used to show is logged on, the number of the tty (teletype
terminal) or display they are using, and the date and time they logged in:

r !
i $ who
i embryo HC] 2010-12-19 07:55
N J
Another useful command is uptime, which will show for how long the system has been
running:

N

$ uptime
20:10:31 up 12:15, 1 user, load average: 0.02, 0.02, 0.00

N J

To print a line of text to the screen we'll use the echo command:

s N
$ echo 'Hello, world!'

Hello, world!

\ J

Searching for commands
In order to see the path in which a command is located we will use the whereis
command, which will search in all the standard locations:

I !
i $ whereis bash
i bash: /bin/bash /etc/bash.bashrc /usr/share/man/manl/bash.1.gz
\ J

Notice that whereis will not look into non-standard paths. Instead, we can use the
which command for that:

4 N
i $ which wesnoth
i /home/embryo/usr/bin/wesnoth
\ J

More Useful CLI Commands
Using cat and less

The cat command is used to concatenate one or more files and print the result to the

6 of 11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

standard output. If only one file is specified as input, cat will print its contents to the
screen. For example, here's the output of the cat /etc/mtab command, which prints
the contents of the /etc/mtab file:

$ cat /etc/mtab
/dev/sdal / ext3 rw,errors=remount-ro 0 0
tmpfs /lib/init/rw tmpfs rw,nosuid,mode=0755 0 0
proc /proc proc rw,noexec,nosuid,nodev 0 0
sysfs /sys sysfs rw,noexec,nosuid,nodev 0 0
procbususb /proc/bus/usb usbfs rw 0 0
udev /dev tmpfs rw,mode=0755 0 0
tmpfs /dev/shm tmpfs rw,nosuid,nodev 0 0
devpts /dev/pts devpts rw,noexec,nosuid,gid=5,mode=620 0 0
/dev/sda5 /floyd ext3 rw 0 0
\ J

So cat would be one way of vizualizing the contents of a file. However, if your terminal
doesn't have scrollback history enabled, or you're in a tty and the file you're trying to
read is too big, cat will only display the end of the file on a single page. This is where
the less command is useful.

less will display the contents of a text file and allow you to navigate up and down to
read it. Here are the keyboard shortcuts used by less:

e J - scroll down one line (equivalent with Ctrl-N or down arrow)
e K - scroll up one line (equivalent with Ctrl-P or up arrow)

e Ctrl-V - scroll down one page (equivalent with Page Down)

e Alt-V - scroll up one page (equivalent with Page Up)

To exit less press Q.
Using tar, gzip and bzip2

These are commands used to create archives and compressed files. tar is a tool which
creates archives known as tar files, while gzip is a compressing tool which uses an
advanced compression algorithm. bzip2 is an advanced compression tool which takes
more time to compress/uncompress files, but it offers a better compression ratio, which
results and smaller files. bzip2 is usually used to save disk space and Internet
bandwidth.

To uncompress a .tar.gz file you would issue a command like the following:

r !
i tar -xzf archive.tar.gz
N J

Where x stands for extract, z specifies that the compressed file is a gzip file, and f
stands for the filename.

To uncompress a .tar.bz2 file you would use something like:

e h
{ tar -xjf archive.tar.bz2
I J
And finally, to create a .tar.gz compressed archive from a directory, use:

e B!
i tar -czf output file.tar.gz input_directory
L J

This will create the compressed file output file.tar.gz from the contents of
input directory, which will be the root directory.

The Power of the Shell
Standard GNU tools usually have two ways of specifying an option, the short and the
long syntax. For example Is -a and Is --all will do the same thing, namely list all the
hidden files in the current directory (files that start with a dot).
Parameters specified between the [and] brackets are optional, for example the
synopsis 1s [OPTION]... [FILE]... tells us that OPTION or FILE don't necessarily need
to be specified.
Using TAB completion
TAB completion is one of the powerful features of the shell. Typing a few starting

letters from a command and pressing TAB will auto-complete the whole command
which starts with those few letters, or will offer the longest possible pattern in case

7 of 11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

more commands share the same letters in the beginning. For example, if we type ba
followed by TAB, the shell will show us possible completion variants, like bash or
batch. This may not look interesting for system commands which are usually short, but
it is a feature which will come in handy in time.

Using control characters

The shell uses certain key combinations to perform certain actions. These key
combinations are called control characters, and although they may be hard to learn at
start, once you've mastered them you will find them faster and powerful than using the
arrow keys or the Home/End and Page Up/Page Down keys. Most of these key
combinations are used by Emacs too, a very powerful development environment (and
not only). Also notice that these are easier to use for a person who knows blind-typing,
since they don't require to move your fingers away from the typing position. The caret
(7) sign in front of every key means "press Ctrl and the following key". Here is the list:

~A - go to the start of line

~E - go to the end of line

~H - erase one character to the left (same effect as Backspace)

~D - erase one character to the right (same effect as Delete, it also exits the shell
if there is no character to delete))

~U - erase everything from the cursor to start

~K - erase everything from the cursor to end

~P - bring the previous command in history

~N - bring the next command in history

~C - interrupt character, sends SIGTERM to the current application

You should familiarize with those, since once learned they will prove quite productive.

The ~N and ~P commands will cycle through the commands in the order in which they
were given, so if for example you type "N twice, the shell will bring the command you
issued before the last command. "D is also called the EOF (end-of-file) character and it
is used to tell a program that the input has ended and it can return its output. As an
example, you can type wc -1, which will count the lines in a file, but without providing
the filename. In this case wc waits for you to enter lines and after you have ended type
Ctrl-D to tell it you entered the text and want to know how many lines you typed in.

Make use of Bash history

Bash keeps a command history so you can recall commands at a later time. Some of the
commands available for this include the use of !!, which will recall and execute the last
command, !command_name, which will recall and execute the last command in
history which starts with command_name or !?command_name?, which will recall
and execute the last command in history which contains the string command_name.

Linux Directory Structure

Linux, just like UNIX, uses a tree hierarchical directory structure. The common
standard directories on a Linux system are briefly overviewed below:

e /- the root directory
o /bin - contains important, vital utilities, like cp, Is or kill
o /sbin - contains system administration utilities available to the root user, like
ifconfig
o /boot - contains the Linux kernel image used to boot the system
o /dev - contains special files pointing to system devices
= /dev/null - pseudo device used to pipe away unwanted data
o /etc - contains configuration files for various applications
o /home - contains home directories for system users
o /lib - contains shared libraries available for all programs throughout the
system
o /media - mount points for devices
o /mnt - mount points for filesystems
o /root - home directory for the root superuser
o /proc - virtual files providing system information
o /tmp - stores temporary files
o /var - logs, emails, printing jobs
o fusr - all the programs which are not located in /bin or /sbin, documentation,
manual pages, icons etc
= fusr/bin - all binary applications not residing in /bin or /sbin
= /usr/include - development headers used by the system
= /usr/lib - shared libraries
= fusr/local - applications which were not installed using the distribution's
package manager; manually compiled applications go here

8 of 11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

Environment Variables

Environment variables are special variables used by the shell and other applications to
gather various information. For example, earlier in this tutorial we used the command
echo $USER, which showed the currently logged in user. In this example, $USER is an
environment variable. Some more examples include $HOSTNAME, $PATH, $PWD,
$SHELL, $HOME, $LANG. And their output:

e N
$ echo $HOSTNAME
debian
$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/games:/home/embryo/bin:/home/embryo/sym:
/home/embryo/usr/local/bin:/home/embryo/usr/bin
$ echo $SHELL
/bin/bash
$ echo $LANG
en_US.UTF-8

N J

Some of them can be changed inside the ~/.bashrc file, for example the $PATH
variable, which contains the locations in which to search for an executable file.

Bash Built-ins

As the name suggests, built-ins are commands which are provided by the Bash program
itself rather than external commands provided by system binaries. To see all the
built-ins included with Bash you can type help. Some examples would be:

e . - or source, read and execute shell commands from a filename

e alias - define new aliases

e bg - place the specified job as argument in the background

e fg - place the specified job as argument in the foreground and make it the current
job

e read - read one line of input from the standard input

e if - conditional command; execute commands if the specified condition is true

e while - loop command; execute commands as long as the condition specified is
true

e help - display all the available shell built-ins; help command_name will display
help on the specified command

You can use the type command (which is also a built-in) to see if a command is a file or
a shell built-in:

$ type type
type is a shell builtin
$ type bash
bash is /bin/bash
$ type cd
cd is a shell builtin
N J

If the specified command is an alias, the output will be something like the following:

e N
$ type 1s
1s is aliased to ‘ls --color=auto -X'

N J

In order to start an application in the background use the & sign after the command,
e.g. man bash & will start the man command with the Bash manual page in
background. To bring it in the foreground type fg, and then to put it back in the
background press Ctrl-Z.

Pipes and Redirecting Output
Using pipes

Pipes are a powerful way to take the output of one command and feed it as input for
another command. A pipe is represented by a vertical line (|). For example:

r !
i $ cat /etc/init.d/ifupdown | grep start
i start|restart)

/etc/init.d/ifupdown-clean start
i echo "Usage: $0 {start|stop|restart|force-reload}" >&2
N\ J

The cat (concatenate) command is used to concatenate the content of one or more files

9o0f 11 12/19/2010 08:23 PM

Introduction to Linux Command-Line for Beginners ...

10 0f 11

and print the result to the output. Since in our example the only argument is a single
filename, cat should print the contents of that file. The grep command is used to print
lines that match a certain pattern, specified as a parameter.

The command we issued is cat /etc/init.d/ifupdown | grep start. The first command
would normally print the entire contents of the file ifupdown to the output, but since
we have a pipe here, the contents of the file will be the input for the grep start
command. In the end, only the lines containing the text 'start' are printed. This
command is equivalent to:

e Y
$ grep start /etc/init.d/ifupdown
[\ J

Redirecting output

There are two common operators for redirecting output: > and >>. The first one will
create a new file and write in it the output which was redirected. If the file already
exists it will be rewritten. The second one will create a new file if it doesn't already
exist and write in it the output which was redirected. If the file already exists, than the
content will be appended to the already existing file.

Let's see how this works:

s N
$ 1s
file3 newdir newfile renamed file
$ ls > list files.txt
$ cat list files.txt
file3
newdir
newfile
renamed file
list_files.txt
N J

First, we listed the contents of the current directory just to see what files are there.
The next command, 1s > list_files.txt will redirect the output of 1s and will write it in
the file list_files.txt. Next we show the contents of this file with cat list_files.txt. Now
let's append the contents of 1s -1 to this file using >>, rather than rewriting it with the
> operator:

- N
$ 1s -1 >> list files.txt
debian$ cat list files.txt
file3
newdir
newfile
renamed file
list_files.txt
total 8
-rw-r--r-- 1 embryo embryo 0 2010-12-19 16:21 file3
drwxr-xr-x 2 embryo embryo 4096 2010-12-19 16:24 newdir
-rw-r--r-- 1 embryo embryo 0 2010-12-19 16:15 newfile
-rw-r--r-- 1 embryo embryo 0 2010-12-19 16:21 renamed_file
-rw-r--r-- 1 embryo embryo 49 2010-12-19 19:20 list files.txt
¢ y,

As you can see, the output of Is -1 has been appended to list files.txt.
Creating and Editing Files

In the previous section I showed how to create an empty file using touch, and now it's
time to see how to create and edit text files using a text editor. For our example we'll
use Nano, a user-friendly text editor that runs in a terminal. Nano is usually installed
on any Linux distribution.

To create a new file with Nano, we will type in the following command:
r B

i $ nano newfile.txt
N J

This will open up Nano so we can start editing our file:

Write some lines of text and then save the file using Ctrl+O followed by Enter. To quit
Nano press Ctrl+X. Now you can view the content of your file using the cat command:

12/19/2010 08:23 PM

http://localhost/wordpress/static/backup intro linux...

Introduction to Linux Command-Line for Beginners ... http://localhost/wordpress/static/backup intro linux...

. Y
i $ cat newfile.txt
i some line of text
N J

Getting Help
The -h and --help options

There are several ways of seeing how a command works and what are the valid
arguments it can take. Usually all GNU tools provide the -h or --help parameters,
which both do the same thing: show a brief description of the available parameters to
the respective command and their meaning. For example, bash --help will show the
Bash version and several options available to it. However, Bash is quite complex and
very powerful, and such a short description usually won't suffice. This is where the
manual pages get in the picture.

Manual pages

A manual page (or man page for short) usually contains all the options that a command
accepts, with explanations for each of them, and a general description of the
application. Only learning to get the habit of searching the man page is very helpful,
since sometimes not even online searching will clarify a specific area like a man page
does. To see a manual page for an application, just type man followed by the
application's name, for example man bash or man man.

To navigate through the man page use the keys K (to scroll up) or J (to scroll down), or
Ctrl-P (up) and Ctrl-N (down), or still Ctrl-V (down one page) and Alt-V (up one page).
When you're done reading, type Q to exit man.

Helpful Links & Further Reading

There is a huge number of additional websites and resources which cover Linux CLI
and Linux in general, and I can't list all of them here. However, I'd like to recommend
two particular ones, created specially for beginners. They are:

e TuxFiles.org - a collection of great tutorials for Linux beginners
e LinuxCommand.org - a very good introduction to Linux CLI and basic scripting

Do you have suggestions or corrections to this guide? Please feel free to speak your
mind here.

Updated: Dec 19, 2010 | v1.0

If you have suggestions or corrections to these tutorials, please contact me at craciun.dan@tuxarena.com or leave a comment on the TuxArena
website.

Copyright (C) Craciun Dan 2010 under the terms of Creative Commons Attribution-ShareAlike 3.0 Unported License.

11 of 11 12/19/2010 08:23 PM

